

Arch 427 Architectural Engineering & Env. Systems

Assignment -3 (final exam & presentation)

Requests:

1. Report:

It is expecting from you to consider the information above and prepare a report which introduces your studio work designed this semester.

The report should have a title page stated your name, lecture's title, project's title, and date.

The structure of the report should have at least three parts.

The first part is the introduction part. In this part, you explain the project's main idea briefly. The site, climate, function, space organisation, building envelope, etc. should be introduced clearly. The explanations will be supported by drawings, sketches, etc.

The second part includes the system definitions of your design. Choose one or more systems among the mechanical systems that you were taught during the lecture and explain

- -the reasons of selection,
- -working principle of the system,
- -the effect on your design strategies

The third part is the conclusion and discussion part. Criticise yourself from the systems perspective and evaluate your design. Indicate the parts that you would like to change on your design based on the requirements of mechanical systems (if any).

The checklist at the attachment will help you to examine your design detailly. Each item at the list should be evaluated, design decisions related with each item is explained and clearly defined in the report.

The reports will be written on an A4 paper in a good structured technical English.

Deliver the report not late than 12 May 2016.

2. Poster Presentation:

On the date of final exam, you are going to submit a poster that includes your design and the technical definitions of mechanical systems that you suggest for your design. This A1 poster presentation should include drawings, sketches, pictures, etc. in order to briefly explain your decisions and suggestions which are listed in the report.

CHECKLIST***

*** this checklist is adapted from the list published in http://www.mech.hku.hk/bse/check.pdf

Architecture

ltem	Key points
Siting and	Thermal environment of surroundings
surroundings	- sunshade, sunlight, wind, reflecting surfaces
Thermal design of	Effect of plants
outdoor environment	- shading by trees and plants
	- wind shielding by trees and plants
	Cooling effects by ponds and fountains
	Reflection from road or floor surfaces and plants
Shape of the building	Ratio of envelope surface area to total floor area
	- usually the smaller the better
	Aspect ratio of floor plan
	- usually the smaller the better
	Number of floors and building height
	- floor-to-floor height, light well's height
Orientation of	Desirable orientation from thermal viewpoint
facades	Optimal strategy of orientation
	- for the same floor plan, east-west axis is better than north-south one
	- main wall openings to face south
Design of building	Zoning and location of air-conditioned and non-air-conditioned spaces
plan and section to	- non-air-conditioned spaces and spaces without occupants may have
enhance thermal	more exterior walls
performance	- plant rooms to be placed on the topmost floor
	Appropriate provision for different building functions
	- hours of using the space
	- moving of heavy objects by occupants
	- provision of smoking lounge
	- provision of store room
	- spaces with high internal loads (lights, people and equipment) may compensate heat loss at the building envelope
	Use of transit areas for thermal buffer zones
	Design of wind-shielded area under openings

Thermal insulation and thermal storage of the roof	Thermal insulation - material selection - thickness - thermal properties (and moisture barrier) Construction of the roof - double slab - thermal bridge prevention Treatment on the roof - soil and planting - drainage of rainwater Sunshade provision Glare control Thermal storage - heavy structure (thermal mass)
	- heavy structure (thermal mass) - interaction with thermal insulation

1. Architecture (continued)

ltem	Key points
Thermal insulation	Thermal insulation
and thermal storage	- material selection
of the exterior walls	- thickness
	- thermal properties (and moisture barrier)
	Construction of the walls
	- use of air cavity
	- ventilation of air cavity
	- location of thermal insulation
	- thermal bridge prevention
	Sunshade provision
	- louvres and shading devices
	Reduce radiant heat
	- use of trees for shading and shielding
	- select materials for glare control
	- provision of ventilated cavity
	Thermal storage
	- heavy structure (thermal mass)
	- interaction with thermal insulation

Thermal insulation, air tightness, ventilation properties and daylight properties of windows and doors	 Thermal insulation Type and construction of window glass: plain glass, insulating glass, reflective glass, tinted glass, double glazing, low-e glass, etc. window-to-wall ratio shading coefficient use of trees, sidewalls, louvres and balcony for shading use of internal shading devices like blinds and curtains orientation (south facing is preferable, and if in other directions, the facing angle of window glass may be adjusted) Air tightness air leakage properties shape and design of door openings: double door, automatic door and rotating door Ventilation (natural) possibility of windows being opened openings and path have less resistance to air flow Daylight penetration reflective louvre skylight design of light wells light transmission properties of window glass array of window openings
exterior and interior walls	Solar absorptivity, control of glare from sunlight and artificial lighting

2. Heating, Ventilating and Air-conditioning (HVAC)

Key points
Suitable zoning strategy to prevent unnecessary losses
- zoning of air-conditioned and non-air-conditioned spaces
- zoning for spaces with different air change rates
- zoning for spaces with different air-conditioning hours
High efficient operation of system equipment
 Zoning for spaces with different conditions: temperature and humidity,
lighting density, air cleanliness, occupant density and equipment used
Zoning for spaces with different load characteristics
- peak hour, load lagging
Balance of building air pressure
- positive and negative air pressure
Sources of energy
- consider local energy structure and form of energy available
Design indoor temperature and humidity
- setting of design conditions
- use of thermal comfort index
- reset conditions at night, before and after occupying hours
- reset according to actual outdoor conditions
- setting of control tolerance bands
Outdoor fresh air rate
- minimum outdoor air requirement
- primary fresh air cooling
Lighting power density
- setting of design maintained illuminance
Changeover of heating and cooling, and period of air-conditioning
- optimize the design and review the necessity
Distribution of air (and temperature)
- air supply method and location, return air location

System and	 Reduce energy losses from inappropriate mixing
equipment	- setting of perimeter and interior zones
	- effective air supply method (avoid cooling and reheat)
	Matching of load characteristics
	- for design of cooling and heating plants
	- heat recovery method
	 Correct use of multiplying factors
	 safety factor of climatic conditions (in load calculation), equipment
	and systems; diversity factor
Heat/cold source	 High efficient operation of equipment (by good management)
system	- efficient part load operation
	 number and division of multiple equipment
	- use of thermal storage method
	 setting of chilled and condensing water temperatures
	 Heat recovery from waste heat and exhaust air
	 utilization of heat sources: exhaust air, transformers, motors, light
	gas burning, warm discharged water
	Use of heat pumps
	Total (and sensible) heat exchanger
	Waste heat and condensing boilers
	Use of natural energy sources
	- primary fresh air unit to use night ventilation
	- solar thermal utilization
	- use of river or sea water for cooling
	 Thermal storage to cut down peak load and increase efficiency of l
	recovery equipment
	- water or ice thermal storage
	- use of latent heat
	- thermal storage by system equipment
	Cogeneration system

2. Heating, Ventilating and Air-conditioning (HVAC) (continued)

Item	Key points
	Prevent losses during transmission
transmission systems	- thermal insulation of piping and ducting
	- minimize air leakage
	- decrease local flow resistance
	Reduce space loads
	- water-cooled lighting fixture (if needed)
	- reduce energy losses from inappropriate mixing
	- better control of latent loads
	Decrease of running power
	- use variable air volume (VAV) method
	- use variable water volume flow (VWV) method
	- use larger temperature difference
	- use low-temperature air supply system
	- use of booster fans and pumps
	- fans and pumps specific to part load operation
	- straightening and shortening of air ducts
	- alternate energy transmission method
	- close loop for water distribution systems
	- lowering of water or air flow velocities
	- better thermal insulation for pipes and ducts
Ventilation systems	Reduce transmission energy
	- prevent excessive ventilation
	- shut down ventilation when not needed
	- control of ventilation rate at part load conditions
	- use of localized ventilation method
	- use of air-conditioning to replace high volume ventilation (e.g. for
	transformer and plant rooms)
	- utilization of natural ventilation
	- use air cleaners
	- multiple fans to handle a large flow capacity
	Reduce ventilation load
	- decrease outside air when preheat or pre-cool is needed
	 control of fresh air (from number of people or use CO₂ analysis)
	- use of primary fresh air unit
	- use of night ventilation
	- use of total heat exchanger
	- transfer of exhaust air from plant room to car park
	- use of exhaust air from cooling tower
	- decrease of ventilation rate during peak load
Control systems	Control of indoor environment (computer automatic control)
	- setting of temperature and humidity control (response to outdoor)
	- control of outdoor fresh air
	Control of the operation of equipment
	- optimal start-stop
	- capacity control on the number of equipment running
	- control of water and air flow rates
	- operation forecast control
	- demand control
	- peak-cutting control
	Promis common

Use of natural energy	• solar energy
	geothermal energy
	• wind energy
	use of energy in soil (temperature and underground water)
	heat recovery from exhaust air
	heat recovery from waste products
exhaust	heat recovery from discharged water

4. Lighting Installations

ltem	Key points
Lighting installations	Design of illumination levels
	- suitable zoning and appropriate level for each zone
	Lighting system
	- general lighting and localized (task) lighting
	- direct and indirect lighting methods
	- on-off method and circuitry design
	Lighting control (by computer methods)
	- manual control
	- occupant-sensing control
	- lighting level sensing control
	- time-schedule control
	 Energy-saving equipment (and their cleaning and maintenance)
	- energy efficient lighting system and luminaires
	Light-sensing control
	- daylight-activated lighting control
	- control system to maintain appropriate illumination level

6. Plumbing and Drainage

ltem	Key points
Cold water supply	Necessity of cold water supply
and drainage	- selection of rooms and locations for cold water supply
	 Load estimation and equipment capacity sizing
	- correct and accurate loads
	 suitable capacity (with safety and diversity factors)
	Reduce pumping energy
	- shortening of piping network and system
	- open loop and close loop systems
	- booster method
	 Maintenance of appropriate water pressure
	Equipment
	 energy-saving (water-saving) equipment and system
	- correct type and size
	Water recycling systems
	- feasibility of using them, their economics and reliability
	Rainwater utilization
Hot water supply	 Necessity of hot water supply
	 selection of rooms and locations for hot water supply
	Conditions of hot water supply
	- flow rate of hot water supply
	- temperature of the hot water
	Hot water supply system
	- design of storage tank or pond
	- specific boiler
	- central supply method and local supply method
	- thermal insulation properties
	- use of solar thermal energy
	- shortening of water piping network
	- heating method
	- thermo-siphon for circulation
	Heat recovery from waste water